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Abstract- Classification of movement-related potentials 
recorded from the scalp to their corresponding limb is a crucial 
task in brain-computer interfaces based on such potentials. This 
paper demonstrates how the features for such a task can be 
selected from a large bank of features using a genetic algorithm. 
We show that it is possible to differentiate between the 
movements of contralateral fingers with a classification accuracy 
of 77% using a small number of features (10-20) selected from a 
bank containing roughly 1000 features. 

 
I. INTRODUCTION 
 

Brain-computer interfaces (BCI’s) are devices intended 
to help disabled people to communicate with a computer 
using the brains’ electrical activity as the sole medium. 
Currently, such devices are realized using feedback [1], visual 
evoked potentials (EP’s) [2] and a combination of feedback 
and imagined movements [3].  

Our work is aimed at constructing a BCI based on 
Movement-Related Potentials (MRP’s). These potentials can 
be recorded from the scalp when a person performs a 
voluntary movement, or imagines such a movement. The 
main problem hindering the construction of such a BCI is that 
MRP’s are recorded from the scalp at an unfavorable signal to 
noise ratio (SNR) in the order of –15[dB] [4].  Nevertheless, 
such a BCI offers a major advantage over most existing BCI’s 
in that it operates asynchronously, i.e. the user can initiate 
communication without an external queue, in contrast with 
many current BCI’s that require the user to respond to 
computer-generated queues. 

An MRP-based BCI consists of three main blocks: A 
detector, a classifier, and a decoder. The detector locates time 
instances where the electroencephalographic (EEG) signal 
contains an imbedded MRP. Designs for such detectors have 
been suggested in [5] and [6]. Next, a classifier resolves 
which limb corresponds to the imbedded MRP. It is this block 
that the current article attempts to solve. Finally, the detector 
transforms a sequence of imagined movements into letters or 
actions, as in [7]. 

One of the major difficulty one encounters when 
designing a classifier is choosing relevant features from the 
vast number of possible features. Feature selection is 
necessary because irrelevant features are known to cause the 
classifier to have poor generalization, increase the 
computational complexity, and require many training samples 
to reach a given accuracy [8]. 

Past attempts at feature selection have usually focused on 
selecting features from a relatively small number of features 
drawn from one family [9], or on selecting a family of 

features from several possible feature families by testing the 
performance of each feature family against several subjects 
[10].  These methods do not produce the best possible 
performance because for each subject a different feature 
family may be best. Indeed, it may be the case that the best 
features for classification are found in several feature 
families, and thus restricting the search to one family of 
features results in sub-optimal performance.  

The goal of our study is to classify contralateral finger 
movements using MRP’s buried in on-going EEG noise. This 
is achieved by generating a large bank of features using 
several feature extraction techniques, and selecting a small 
number of them using a genetic algorithm. These few features 
are then used as input to a support vector machine classifier. 
  
 
II. METHODOLOGY 
 
A. Experimental setup and data acquisition 

 
Four subjects (male, 27-30 years old) participated in the 

study. The subjects do not suffer from neurological or 
muscular disorders. Informed consent was obtained from the 
subjects. 

Each subject was seated on an armchair, with his palms 
on a table and his feet on a footstool. Micro-switches were 
placed under both index fingers. The subject was told to press 
the micro-switches in random order, self paced, as briefly as 
possible. The subject was requested to pause for 
approximately 3 seconds between each movement, and the 
experimenter inform him when he was too quick. The 
experiment lasted for 22 minutes and 20 seconds, during 
which the subject made between 80 and 150 movements of 
each finger. 

Cortical potentials were recorded using electrodes placed 
over FP1, FP2, F3, F4, C3, C4, T3 and T4, all referenced to an 
electrode over CZ (according to the 10-20 system, using an 
Electro-Cap). The electrodes were Ag-AgCl surface 
electrodes, circular, with a 6-mm diameter. Resistance 
between electrodes was approximately 5K�. The state of the 
micro-switches was recorded in order to synchronize events 
in the EEG with external events.  

The EEG channels were amplified using a custom made 
optically isolated amplifier with a gain of 10,000 and a 0.01-
40Hz pass band. The amplified signals were digitized and 
sampled, together with the micro-switch states, at 250Hz. The 
samples were saved to disk, and processing was performed 
offline using Matlab. 
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B. Feature extraction 

 
Five types of feature extraction methods were used in the 

study.  These are: 
a. AR: The autoregressive coefficients of orders one 

through eight, obtained using the Yule-Walker 
method [11]. 

b. PSD: The estimated power spectral density 
calculated using Welch's averaged, modified     
periodogram method [12], in the 0 to 32[Hz] 
frequency range. Bin size was 2[Hz]. 

c. Barlow: The mean frequency and the mean 
amplitude in two spectral bands: 5-15[Hz] and 10-
13[Hz]. 

d. Mean: The mean amplitude difference between 
every pair of recorded electrodes. 

e. STD: The standard deviation of the amplitude 
difference between every pair of recorded electrodes. 

 
The features were extracted for each micro-switch press 

in three time intervals: 
a. From 1.1[sec] before the micro-switch press until 

1[sec] after it. These times contain the whole 
movement-related potential. 

b. From 0.4[sec] before the micro-switch press until 
the instant that it was pressed. This time interval 
corresponds to parts of the preparatory potential. 

c. From 0.3[sec] before the micro-switch press until 
0.3[sec] after it. This time period corresponds to 
the Pre-motion potential, the Motor potential and 
the feedback potentials of the MRP [13]. 

 
This feature extraction resulted in 1092 features for each 

micro-switch press. Attempting to classify the samples using 
all 1092 features resulted in errors not significantly smaller 
than those obtained by chance. Therefore, we attempted to 
select a small number of features, which would (hopefully) 
give better classification results. 

 
C. Feature selection 

  
A Genitor type [14] genetic algorithm was used in order 

to select a small number of significant features from the 
feature set. The use of a genetic algorithm, rather that 
algorithms based on probability density estimation such as 
[15], was warranted by the relatively small number of 
training examples.  

Five-fold cross validation and the SVMlight software 
package [16] was used to build and test classifiers. The 
score of a feature group was calculated as the average 
percentage of correctly classified tests examples. 

  
The genetic algorithm proceeds as follows: 

1. Randomly partition the a set of N features into 

� �Fg NNN =  groups, where NF is the number of 

features to be used for classification.  

2. Classify the examples using the feature groups and 
order them according to their score (defined above). 

3. Discard one-third of the groups that have the lowest 
score, and build the same number of new groups by 
randomly selecting half the features from the 
remaining two-thirds of the groups, and combining 
them. 

4. Repeat steps 2-3 for a predetermined number of 
iterations.  

 
It was experimentally determined that repeating steps 2-3 

for more than 30 iterations did not, usually, result in 
significant improvements of the classifier, and thus the 
algorithm was run for that number of iterations. 

The algorithm was tested on the data recorded from the 
four subjects. For each subject we attempted to pick between 
1 and 180 relevant features. In order to obtain a good 
estimation of the algorithms’ performance, it was run 5 times 
for each of the number of features. 
 
III. RESULTS 
 

Fig. 1 shows the average success rate of the classifiers as 
a function of the number of features used for classification. 
From this figure it is evident that the best classification rates 
were obtained using 20 features, and that the degradation 
caused by using only 10 features was small. Considering that 
additional features generate a higher computational load, we 
chose to use 10 features for classification.   

Based on these results, we examined which channels, 
time intervals, and feature extractors were selected most 
frequently as relevant to the classification problem. The 
results of this test are shown in Fig. 2.  

As demonstrated in Fig. 2, the most frequently selected 
channels are those located over the motor cortex (C3, C4 and 
T4). This is to be expected because the main physiologic 
difference between the movements of the two fingers is the 
area of the motor cortex that activates them. AR was the most 

Fig. 1: Classification success rate as a function of the number of features. The 
best performance is obtained using 20 features. Error bars show the standard 

deviation of the success rate. 
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useful feature extractor of the five tested, a finding that is in 
agreement with [10]. Finally, the most influential times for 
classification were those before and just after the movement. 
This can be explained by the fact that the area corresponding 
to the different limbs on the motor and somatosensory 
cortices are activated during those times, and are thus useful 
in distinguishing between the two types of movement.   

 
IV. DISCUSSION 
 

MRP-based BCI’s consist of three elements: A detector, 
a classifier, and a decoder. In this paper we have addressed a 
possible design for a classifier to distinguish between 
movements of contralateral fingers using MRP’s imbedded in 
EEG. 

 
Our results show that it is possible to select as few as 10 

subject-specific features and attain an average of 77% 
accuracy in classification. Although this is a modest success 
rate, one should keep in mind that it was obtained without 
user feedback, that is: in an offline system. Experience has 
shown that allowing subject interaction can dramatically 

increase performance. For example, the real-time system in 
[3] started with a 30% success rate, which improved to over 
70% success rate after five days of training. We therefore 
hypothesize that implementing the above algorithm in a real-
time system will, after relatively few training sessions, 
produce much higher classification accuracy than that 
attained by the off-line system.   
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Fig. 2:Relative usage of features as the 10 best features for classification as 
a function of the recording channel, feature extractor and time interval. 
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